Редактирование Нейронная сеть (секция)
Материал из Documentation.
Перейти к:
навигация
,
поиск
== Исследование алгоритмов адаптации == Главный вопрос — как выбрать структуру многослойной нейронной сети для решения выбранной конкретной задачи — до сих пор в значительной степени не решён. Можно предложить лишь разумный направленный перебор вариантов структур с оценкой их эффективности в процессе решения задачи. Однако оценка качества работы алгоритма настройки на конкретной выбранной структуре, конкретной задаче может быть недостаточно корректной. Так, для оценки качества работы линейных динамических систем управления применяются типовые входные сигналы (ступенчатый, квадратичный и т. д.), по реакции на которые оцениваются установившаяся ошибка (астатизм системы) и ошибки в переходных процессах.<ref>[https://bigenc.ru/technology_and_technique/text/4114009 Нейронные сети]</ref> Подобно этому, для многослойных нейронных сетей были разработаны типовые входные сигналы для проверки и сравнения работоспособности различных алгоритмов настройки. Естественно, что типовые входные сигналы для таких объектов, как многослойные нейронные сети, являются специфическими для каждой решаемой задачи. В первую очередь были разработаны типовые входные сигналы для следующих задач: распознавание образов; кластеризация; нейроуправление динамическими объектами.<ref>[https://bigenc.ru/technology_and_technique/text/4114009 Нейронные сети]</ref> Основным аксиоматическим принципом применения нейросетевых технологий вместо методов классической математической статистики является отказ от формализованного описания функций распределения вероятностей для входных сигналов и принятие концепции неизвестных, сложных функций распределения. Именно по этой причине были предложены следующие типовые входные сигналы.<ref>[https://bigenc.ru/technology_and_technique/text/4114009 Нейронные сети]</ref> Для задачи кластеризации была предложена выборка случайного сигнала с многомодальным распределением, реализуемая в $N$-мерном пространстве признаков с модами функции распределения, центры которых в количестве $Z$ размещаются на гипербиссектрисе $N$-мерного пространства признаков. Каждая мода реализует составляющую случайной выборки с нормальным распределением и среднеквадратичным отклонением $σ$, равным для каждой из $Z$ мод. Предметом сравнения различных методов кластеризации будет динамика настройки и качество решения задачи в зависимости от $N$, $Z$ и $σ$, при достаточно большой случайной выборке $M$. Этот подход можно считать одним из первых достаточно объективных подходов к сравнению алгоритмов кластеризации, в том числе основанных на многослойных нейронных сетях c соответствующим выбором структуры для достижения необходимого качества кластеризации. Для задач классификации входные сигналы для испытаний аналогичны сигналам для кластеризации с тем изменением, что выборка с многомодальным распределением делится надвое (в случае двух классов) или на $K$ (в случае $K$ классов) частей с перемежающимися модами функции распределения для отдельных классов.<ref>[https://bigenc.ru/technology_and_technique/text/4114009 Нейронные сети]</ref>
Описание изменений:
Отменить
|
Справка по редактированию
(в новом окне)
Просмотры
Статья
Обсуждение
Править
История
Личные инструменты
Навигация
Заглавная страница
Случайная статья
Инструменты
Ссылки сюда
Связанные правки
Загрузить файл
Спецстраницы