Редактирование Нейронная сеть (секция)
Материал из Documentation.
Перейти к:
навигация
,
поиск
== Критерии первичной оптимизации в многослойных нейронных сетях == Вероятностная модель мира, взятая за основу при построении алгоритмов адаптации в многослойных нейронных сетях, позволила формировать критерий первичной оптимизации в рассматриваемых системах в виде требований минимума средней функции риска и его модификаций: максимум апостериорной вероятности (условная вероятность случайного события при условии того, что известны апостериорные, то есть основанные на опыте, данные); минимум средней функции риска; минимум средней функции риска при условии равенства условных функций риска для различных классов; минимум средней функции риска при условии заданного значения условной функции риска для одного из классов; другие критерии первичной оптимизации, вытекающие из требований конкретной практической задачи. В работах российских учёных были представлены модификации алгоритмов настройки многослойных нейронных сетей для указанных выше критериев первичной оптимизации. Отметим, что в подавляющем большинстве работ в области теории нейронных сетей и в алгоритмах обратного распространения рассматривается простейший критерий — минимум среднеквадратической ошибки, без каких бы то ни было ограничений на условные функции риска.<ref>[https://bigenc.ru/technology_and_technique/text/4114009 Нейронные сети]</ref> В режиме самообучения (кластеризации) предпосылкой формирования критерия и функционала первичной оптимизации нейронных сетей служит представление функции распределения входного сигнала в виде многомодальной функции в многомерном пространстве признаков, где каждой моде с некоторой вероятностью соответствует класс. В качестве критериев первичной оптимизации в режиме самообучения использовались модификации средней функции риска.<ref>[https://bigenc.ru/technology_and_technique/text/4114009 Нейронные сети]</ref> Представленные модификации критериев первичной оптимизации были обобщены на случаи континуума классов и решений; континуума признаков входного пространства; континуума числа нейронов в слое; при произвольной квалификации учителя. Важным разделом формирования критерия и функционала первичной оптимизации в многослойных нейронных сетях при вероятностной модели мира является выбор матрицы потерь, которая в теории статистических решений определяет коэффициент потерь $L_{12}$ при ошибочном отнесении образов 1-го класса ко 2-му и коэффициент потерь $L_{21}$ при отнесении образов 2-го класса к 1-му. Как правило, по умолчанию матрица $L$ этих коэффициентов при синтезе алгоритмов настройки многослойных нейронных сетей, в том числе и при применении метода обратного распространения, принимается симметричной. На практике это не соответствует действительности. Характерным примером является система обнаружения мин с применением геолокатора. В этом случае потери при ошибочном отнесении камня к мине равнозначны некоторой небольшой потере времени пользователем геолокатора. Потери, связанные с ошибочным отнесением мины к классу камней, связаны с жизнью или значительной потерей здоровья пользователями геолокатора.<ref>[https://bigenc.ru/technology_and_technique/text/4114009 Нейронные сети]</ref>
Описание изменений:
Отменить
|
Справка по редактированию
(в новом окне)
Просмотры
Статья
Обсуждение
Править
История
Личные инструменты
Навигация
Заглавная страница
Случайная статья
Инструменты
Ссылки сюда
Связанные правки
Загрузить файл
Спецстраницы